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Abstract—Tumor growth model identification under antiangio-
genic therapy is a very current issue since the existing models in
the literature have some limitations and usually they are not
clinically validated. We have carried out animal experiments
to observe valid data; mice were transplanted with C38 colon
adenocarcinoma and they were treated with bevacizumab. Two
groups were created, control group was treated according to the
protocol, while case group members receive much lower doses
daily. We created fixed and mixed models for the groups. Mixed
models differs from fixed ones in random effects – in the case
of mixed models both the intercept and the slope are random
variables. These models are appropriate when the aim is to model
not the concrete subjects in the sample, but rather, to describe
the imagined population from which the samples were coming.

Index Terms—tumor growth, identification, mixed model, C38
colon adenocarcinoma, bevacizumab

I. INTRODUCTION

Antiangiogenic therapy [1] is a special type of tumor

treatment, which inhibits angiogenesis. Angiogenesis is the

process of forming new blood vessels; normally it occurs in

the human body only at specific times (e.g. in case of wound

healing). Tumor cells can break through this strict control and

become able to form own blood vessels, which is essential for

survival after a certain tumor size (1−2 mm diameter). The aim

of antiangiogenic therapy is to prevent tumors from forming

new blood vessels, because without angiogenesis tumor growth

is inhibited [2], [3]. Bevacizumab (Avastin) [4] is a drug for

antiangiogenic therapy, which inhibits the biological activity

of human VEGF (vascular endothelial growth factor) [5].

II. MATERIALS AND METHODS

A. Experimental Settings

In our experiment eight weeks old male C57Bl/6 mice

with implanted C38 colon adenocarcinoma was used applying

bevacizumab treatment. A piece of tumor was transplanted

subcutaneously in the recipient animal on the 1st day of the

experiment. Two groups were created: control and case groups.

Control group (5 mice) received bevacizumab in one dose for

an 18-day treatment according to the protocol (200 μg beva-

cizumab with 455 μl 0.9% NaCl solution) intraperitoneally on

the -1st day and on the 17th day. Case group (9 mice) received

one-tenth dose of control dose intraperitoneally spread over 18

days (1.11 μg bevacizumab with 45 μl 0.9% NaCl solution)

every day from the -1st day of the experiment. The treatment

period was 20 days.

Tumor volume was measured in two different ways. First

way is the digital caliper measurement; in that case tumor

diameters (width, length) are measured with caliper. It can

be carried out in vivo during the experiment because of the

subcutaneous localization of the tumor. Tumor volume (and

the third diameter) has to be approximated, assuming a certain

shape for the tumor. Measurements with caliper were done on

the 0th, 2nd, 4th, 6th, 8th, 10th, 12th, 14th, 16th, 18th and

19th days of the experiment. The other way to measure tumor

volume is the usage of small animal MRI, a non-invasive in

vivo technology giving the possibility of a more precise volume

measurement [6]. Measurements with small animal MRI were

done on the 0th, 4th, 7th, 11th, 14th and 19th days of the

experiment.

B. Model Description

Statistical analysis was carried out in R program package [7]

version 3.1.2 with a custom script developed for this purpose

that is available from the corresponding author on request. For

the mixed effects model, R library nlme [8] version 3.1-118

was also used.

The growth of the tumors exhibit exponential shape irre-

spectively of the animal and the measurement method, thus,

the logarithm of the tumor size will be used in subsequent

calculations to achieve linearity. The growth patterns are

illustrated on Figure 1.

The tumor growth curves were modelled with mixed effects

models, which is one of the most widely used tools in analyz-

ing longitudinal data [9], [10], [11]. Such growth curves rep-

resent clustered data (with the repeated measurements within

the same subject forming clusters), which can be effectively

handled with mixed models [12].

More specifically, it was presumed that the logarithm of the

tumor size exhibits linear growth in time, but both the intercept

and the slope may possibly depend on the group (control or
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(a) Caliper
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(b) MRI

Fig. 1. Growth of the tumors in each animal shown with the logarithm of tumor size, both with caliper and MRI measurement method

case) of the mice. This was allowed to grab the potential impact

of the treatment. Thus, the fixed part of the regression was

logSizei,t = β0+β0CaseCasei+β1t+β1CaseCaseit+εij , (1)

where i is the subject (mouse), t is the time (in days, since

the initiation of the study), εij is the error term and Casei is

a dummy variable indicating if ith subject belongs to the case

group, viz.

Casei =

{
1 if the ith subject belongs to the case group

0 if the ith subject belongs to the control group

In other words, the intercept in the control group is β0, in

the case group it is β0 + β0Case, the slope is β1 in the control

group and β1+β1Case in the case group (i.e. β0Case and β1Case

is the difference in the intercept and slope, respectively, of the

case group, compared to the controls).
Next, those coefficients were allowed to vary between

subjects, by adding a random effect, thus the mixed model
is

logSizei,t = (β0 + b0,i) + (β0Case + b0Case,i) Casei+

+ (β1 + b1,i) t+ (β1Case + b1Case,i) Caseit+ εij .
(2)

This means a similar regression model, but with coefficients

being random variables – coming from a distribution – instead

of being fixed numbers. This model is appropriate when the

aim is to model not the concrete subjects in the sample, but

rather, to describe the imagined population from which the

samples were coming. This structure also allows to account

for the intra-individual correlations characteristic of longitudi-

nal data. Here, the estimated quantity is not the individual

parameters of a subject but rather the variances of the b
random components – which is a single number independently

of the sample size. Thus, a mixed model represents a kind

of compromise between fitting a – global – fixed regression

to every subject (parsimonious, but neglects individual differ-

ences) and an – individual – fixed regression to each subject

itself (provides a good fit even in the presence of individual

differences, but prevents inferring on the population of the

subjects).

It was presumed that
(
b0,i b0Case,i b1,i b1Case,i

)T ∼
N (0,Ψ) – i.e. they have normal distribution – that is, the ran-

dom effects are allowed to have arbitrary correlation structure.

(However, random effects of different subjects are assumed to

be independent.) Also, its is assumed that εij ∼ N (
0, σ2

)
independent and identically distributed, and also independent

of the random effects [12].

Usual model diagnostics – inspecting residual vs. fitted

value plot to look for signs of heteroskedasticity and QQ-plot

for residual normality, also stratified according to groups –

were performed in all cases.

III. RESULTS

A. Model Identification for Caliper Measurements

For the caliper measurements, the case and control groups

did not differ significantly, neither in intercept (p = 0.5668),

nor in slope (p = 0.1703). After removing these, the intercept

– the initial tumor volume – was 3.85 (47.0 in the original

scale) and the slope was 0.23 (that is: 26.4% increase in tumor

volume each day, p < 0.0001). The random effects had a

standard deviation of 0.48 for the intercept and 0.044 for the
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(a) Caliper
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(b) MRI

Fig. 2. Growth of the tumors in each animal, both with caliper and MRI measurement method

slope. The random effects are shown on Figure 2(a) for each

subject. The residual standard deviation was 0.29.

B. Model Identification for MRI Measurements

For the MRI measurements, the case and control groups

did differ significantly, but only in terms of slope, that is,

the growth rate of the tumor (p = 0.003), but not in the

intercept, the initial tumor volume (p = 0.343). Therefore the

difference in the intercept was removed from the model; in the

resulting final model, the intercept – the initial tumor volume –

was 4.62 (101.5 in the original scale) and the slope was 0.20
(22.2% increase in tumor volume each day, p < 0.0001) in

the control group with the difference between the two groups

being −0.038 (p = 0.0047), thus the growth rate in the case

group was 17.7% each day. The random effects had a standard

deviation of 0.34 for the intercept, 0.013 for the slope and

0.019 for the interaction. The random effects are shown on

Figure 2(b) for each subject. The residual standard deviation

was 0.34.

The overall fit of the mixed effects models – indicating the

prediction both with the fixed part-only and with the whole

mixed model – is shown on Figure 3.

IV. DISCUSSION

Knowing the general equations of the created models, we

have to investigate separately the resulted models and the

biological meaning of the different variables. Besides these,

we have to transform the logarithmic scale models into linear

ones for control system identification.

β0Case describes the difference in the intercept between

control and case groups:

if β0Case < 0 then the initial tumor volume is smaller

in case group than control group

if β0Case > 0 then the initial tumor volume is larger

in case group than control group.

β1Case describes the difference in the slope between control

and case groups:

if β1Case < 0 growth rate is slower

in case group than control group

if β1Case > 0 growth rate is faster

in case group than control group.

A. Identified Models for Caliper Measurements

1) Fixed Model for Caliper Measurements: In the case of

caliper measurements, the case and control groups did not

differ significantly, neither in intercept, nor in slope, therefore

β0Case = 0 and β1Case = 0.

logSizecaliper,fixedi,t = β0+β1t+εij = 3.78+0.24·t+εij , (3)

where εij ∼ N (0, 0.29).

linSizecaliper,fixedi,t = 43.8 · e0.24t · εlinij , (4)

where εlinij is the error term in the linear model,

εlinij ∼ LN (0, 0.29) (LN stands for lognormal distribution).
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(a) Caliper
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(b) MRI

Fig. 3. Predictions of the mixed models, with the fixed part shown separately

2) Mixed Model for Caliper Measurements: Since there

was no difference in the intercept and slope between control

and case groups, these terms cannot have random effects

(b0Case,i = 0, b1Case,i = 0).

logSizecaliper,mixed
i,t = (β0 + b0,i) + (β1 + b1,i) t+ εij =

= (3.85 + b0,i) + (0.23 + b1,i) t+ εij ,
(5)

where b0,i ∼ N (0, 0.48) and b0,i ∼ N (0, 0.044).

linSizecaliper,mixed
i,t =

(
47.0 · blin0,i

) · e(0.23+b1,i)t · εlinij , (6)

where blin0,i ∼ LN (0, 0.48).

B. Identified Models for MRI Measurements

1) Fixed Model for MRI Measurements: Since MRI tech-

nique provides much more precise tumor volume measurement

than caliper method, we have identified difference in the slope

between control and case groups. As the difference have

negative value, we can state that the growth rate is slower

in case group than control group, i.e. our alternative adminis-

tration was more effective than the protocol-based treatment.

In the intercept there was no difference (β0Case = 0), which

is correct according to the fact that both group’s members

was transplanted by the same method and the first treatment

happened just one day before the first measurement.

logSizeMRI,fixed
i,t = β0 + β1t+ β1CaseCaseit+ εij =

= 4.62 + 0.21t− 0.06 · Caseit+ εij ,
(7)

where εij ∼ N (0, 0.34) .

logSizeMRI,fixed,control
i,t = 4.62 + 0.21t+ εij . (8)

logSizeMRI,fixed,case
i,t = 4.62 + 0.15t+ εij . (9)

linSizeMRI,fixed,control
i,t = 101.5 · e0.21t · εlinij , (10)

where εlinij ∼ LN (0, 0.34).

linSizeMRI,fixed,case
i,t = 101.5 · e0.15t · εlinij . (11)

2) Mixed Model for MRI Measurements: Since there was

no difference in the intercept between control and case groups,

this term cannot have random effect (b0Case,i = 0).

logSizeMRI,mixed
i,t = (β0 + b0,i) + (β1 + b1,i) t+

+ (β1Case + b1Case,i) Caseit+ εij =

= (4.62 + b0,i) + (0.20 + b1,i) t+

+ (−0.038 + b1Case,i) Caseit+ εij ,

(12)

where b0,i ∼ N (0, 0.34), b1,i ∼ N (0, 0.013) and b1Case,i ∼
N (0, 0.019).

logSizeMRI,mixed,control
i,t = (4.62 + b0,i)+(0.20 + b1,i) t+εij .

(13)
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Fig. 4. Impulse response of the control group between Q10 and Q90
quantiles

logSizeMRI,mixed,case
i,t = (4.62 + b0,i)+

+ (0.162 + b1,i + b1Case,i) t+ εij ,
(14)

where b1,i + b1Case,i = b11Case,i ∼ N (0, 0.026).

Finally, the linear mixed models for MRI measurements:

linSizeMRI,mixed,control
i,t =

(
101.5 · blin0,i

) · e(0.20+b1,i)t · εlinij ,
(15)

where blin0,i ∼ LN (0, 0.34).

linSizeMRI,mixed,case
i,t =

(
101.5 · blin0,i

) · e(0.162+b11Case,i)t · εlinij .
(16)

C. Control System Identification
1) Control System Identification for Control and Case

Groups: A linear dynamic model in time domain is written

in the following form (state space representation):

ẋ(t) = Ax(t) +Bu(t) (17)

y(t) = Cx(t) +Du(t), (18)

where (17) defines the dynamics of the system (x is the state

variable and u is the input of the system), while (18) defines

the output of the system.
The state space model of the control group, using the mixed

model of MRI measurements (based on Equantion (15)):

ẋ(t) = (0.20 + b1,i)x(t) + u(t) (19)

y(t) =
(
101.5 · blin0,i

)
x(t), (20)

where b1,i ∼ N (0, 0.013) and blin0,i ∼ LN (0, 0.34).
The state space model of the case group, using the mixed

model of MRI measurements (based on Equantion (16)):

ẋ(t) = (0.162 + b11Case,i)x(t) + u(t) (21)

y(t) =
(
101.5 · blin0,i

)
x(t), (22)

where b11Case,i ∼ N (0, 0.026) and blin0,i ∼ LN (0, 0.34)
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Fig. 5. Impulse response of the case group between Q10 and Q90 quantiles

2) Investigating the Effect of the Random Variables: To

simulate the effect of the random variables of the MRI mixed

model, we calculated two quantiles of the distributions, hence

we defined a range and we investigated the extrema of the

range. To take into account the 80% of the elements, we

calculated the Q10 and Q90 quantiles (which splits off the

lowest 10% of data, and the highest 90% of data, respectively).

The mixed model for the control group, using the discrete

value of Q10 quantile both for slope and intercept random

variables:

syscontrol,Q10 =
(
101.5 ·Q10(blin0,i)

) · e(0.20+Q10(b1,i))t, (23)

where Q10(blin0,i) = 0.6404 and Q10(b1,i) = −0.0167.

Similarly, using Q90 quantile both for slope and intercept

random variables:

syscontrol,Q90 =
(
101.5 ·Q90(blin0,i)

) · e(0.20+Q90(b1,i))t, (24)

where Q90(blin0,i) = 1.5314 and Q90(b1,i) = 0.0167.

Omiting the random variables, the ”fixed” model for the

case group:

syscontrol,fixed = 101.5 · e0.20t. (25)

The mixed model for the case group, using the discrete

value of Q10 quantile both for slope and intercept random

variables:

syscase,Q10 =
(
101.5 ·Q10(blin0,i)

) · e(0.162+Q10(b11Case,i))t,
(26)

where Q10(b11Case,i) = −0.0333.

Similarly, using Q90 quantile both for slope and intercept

random variables:

syscase,Q90 =
(
101.5 ·Q90(blin0,i)

) · e(0.162+Q90(b11Case,i))t,
(27)

where Q90(b11Case,i) = 0.0333.

Omiting the random variables, the ”fixed” model for the

case group:

syscase,fixed = 101.5 · e0.162t. (28)
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One can see the impulse responses of the systems in

Figure 4 for control group, and in Figure 5 for case group.

We plan further investigations on the random effect, however

it is clear that this mixed model approach is a new, promising

method in tumor growth identification.
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by the Óbuda University research fund. Levente Kovács was
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