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Abstract
Null hypothesis significance testing dominates the current 
biostatistical practice. However, this routine has many flaws, 
in particular p-values are very often misused and misinter-
preted. Several solutions has been suggested to remedy this 
situation, the application of Bayes Factors being perhaps the 
most well-known. Nevertheless, even Bayes Factors are very 
seldom applied in medical research. This paper investigates 
the application of Bayes Factors in the analysis of a realistic 
medical problem using actual data from a representative US 
survey, and compares the results to those obtained with tra-
ditional means. Linear regression is used as an example as 
it is one of the most basic tools in biostatistics. The effect of 
sample size and sampling variation is investigated (with res-
ampling) as well as the impact of the choice of prior. Results 
show that there is a strong relationship between p-values and 
Bayes Factors, especially for large samples. The application 
of Bayes Factors should be encouraged evenin spite of this, as 
the message they convey is much more instructive and scientif-
ically correct than the current typical practice.

Keywords
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1 Introduction
The application of ​p​-values – and null hypothesis signifi-

cance testing in general – remains a controversial topic in many 
applied statistical fields, including biostatistics. The currently 
most widely used (frequentist) apparatus of biostatistics does-
not – as readers, clinical researchers and sometimes even text-
books seem to believe – represent a straightforward logical 
construct, but rather an incompatible hybrid of the Fisherian 
and the Neyman-Pearson tradition [1-4], which is itself prob-
lematic, and an application and interpretation routine that is 
often deeply flawed. The most important typical errors, falla-
cies, misunderstandings and misuses include [5-11]: 
•	 Confusing clinical significance (whether the effect size is 

meaningful in the domain, in this case, medically) with 
statistical significance (whether the effect is assumed to be 
larger than what can be attributed to sampling variation). 

•	 Application of the apparatus in non-sampling situations 
or for extremely large samples. 

•	 Forgetting that p-values and the related inferential appa-
ratus only capture sampling error, but say nothing of the 
potential non-sampling sources of error (i.e. biases). 

•	 Forgetting whether the null hypothesis is – medically – 
meaningful at all or not (especially point nulls). 

•	 Assuming that p-value is an error probability, i.e. the prob-
ability that the null hypothesis is true, given the sample.

Many believe that these errors are major contributors to the 
‟replicability crisis” that is often discussed nowadays in med-
icine [12, 13]. 

These problems are so profound, despite that so preva-
lent  [14], that there have been memorable attempts which 
implemented the most radical solution: banning the appara-
tus completely or almost completely. Perhaps most notable 
is the case of the Epidemiology journal  [15] (with the rather 
strict policy removed in 2001 when founding editor Kenneth 
Rothman stepped down [16]) and the more recent example of 
the journal Basic and Applied Social Psychology  [17].These 
decisions, in particular the question whether they are effective 
or needed, led to a widespread controversy, with American 
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Statistical Association (ASA) issuing a statement in mid-2016, 
formulating the views of the world’s leading scientific body 
and gathering many relevant paper in the topic [18]. 

The most important is perhaps the last fallacy from the 
above list: many readers are tempted to beleive that p-values 
can convey information (evidence) on their own, without ref-
erence to any external information. This is, of course, not true: 
p value is not the probability of the null given the sample, but 
the other way around, probability of obtaining the sample (or 
more extreme) given the null. To reverse it, we have to use the 
Bayes’ theorem: 

​P​(​H​ 0​​ | )​  = ​ 
P​( | ​H​ 0​​)​ ⋅ P​(​H​ 0​​)​  ____________ P​()​ ​​

where ​​ symbolizes the sample. (​P​ means either probability or 
density (i.e. likelihood), depending on whether the variable is 
discrete or continuous.) One can now immediately see that we 
need ​P​(​H​ 0​​)​​, that is, the prior probability of the null hypothesis 
to obtain the probability that is thought by many to be given by 
the ​p​-value. (Forgetting this is identical to the base rate fallacy.) 
Its effect can be dramatic: it is quite easy to see that in the most 
simple situation, a ​p​-value of ​0.05​ might very well mean 36% 
probability that the null is true (no effect found) if the prior 
probability is only 10% [19, 20]. (We assumed 80% power, a 
typical value.) With more advanced tools, it it even possible to 
show that for ​p  =  0.05​ the probability of the null being true 
cannot be smaller than 28.9% no matter what situation we pre-
sume [21, 22]. 

Many attempts have been made to replace or at least sup-
plement ​p​-values with analytical methods that are less prone to 
these errors, and help correct interpretation. The already men-
tioned ASA statement is rather vague from this aspect: ”[t]hese 
includemethods that emphasize estimation over testing, such as 
confidence, credibility, or prediction intervals; Bayesian meth-
ods; alternative measures of evidence, such as likelihood ratios 
or Bayes Factors; and other approaches such as decision-theo-
retic modeling and false discovery rates” [18. 

Out of these, perhaps the Bayes Factors are the – relatively 
– most well-known. The basic idea is rather simple: take the 
same equation as (1) but for ​​H​ 1​​​ (instead of ​​H​ 0​​​), and divide the 
two; thus we obtain 

​​ 
P​(​H​ 0​​ | )​

 ______ P​(​H​ 1​​ | )​ ​  = ​ 
P​( | ​H​ 0​​)​ ______ P​( | ​H​ 1​​)​

 ​ ⋅ ​ 
P​(​H​ 0​​)​ _____ P​(​H​ 1​​)​

 ​​

as the term ​P​()​​ fortunately cancels. Noting that ​P​(​H​ 1​​)​  = 
1 − P​(​H​ 0​​)​​ (and likewise for the conditional probability) we 
actually have 

​​ 
P​(​H​ 0​​ | )​

 ________ 1 − P​(​H​ 0​​ | )​ ​  = ​ 
P​( | ​H​ 0​​)​ ______ P​( | ​H​ 1​​)​

 ​ ⋅ ​ 
P​(​H​ 0​​)​ ______ 1 − P​(​H​ 0​​)​

 ​,​

but a probability divided by one minus that probability is odds, 
so we can write

​odds​(​H​ 0​​ | )​  = ​ 
P​( | ​H​ 0​​)​ ______ P​( | ​H​ 1​​)​

 ​ ⋅ odds​(​H​ 0​​)​.​

The remaining factor on the right-hand side is called Bayes 
Factor [23, 24]: 

​B ​F​ 01​​  = ​ 
P​( | ​H​ 0​​)​ ______ P​( | ​H​ 1​​)​

 ​.​

In other words, this is the factor with which we have to mul-
tiply the prior odds to obtain the posterior odds. 

In practice, if the two hypotheses represent restrictions 
on a – not necessarily one-dimensional – parameter ​θ​, i.e. 
​​H​ 0​​ : θ  ∈ ​ θ​ 0​​​  and  ​​H​ 1​​ : θ  ∈ ​ θ​ 1​​​ (​​θ​ 0​​ ∩ ​θ​ 1​​  =  ∅​) then we have 

​B ​F​ 01​​  = ​ 
​∫ ϑ∈​θ​ 0​​

​​ ​​ P​( | ​H​ 0​​, ϑ)​π​(ϑ | ​H​ 0​​)​ϑ
  _________________  ​∫ ϑ∈​θ​ 1​​

​​ ​​ P​(| ​H​ 1​​, ϑ)​π​(ϑ | ​H​ 1​​)​ϑ
 ​​

where ​π​(ϑ)​​ is the prior distribution of the parameter. This is 
similar to the likelihood-ratio that is very well-known in fre-
quentist statistics too, but instead of the supremum of the like-
lihood being taken, practically a weighted average is formed, 
weighted by the prior. 

This definition can be substantially simplified in the prac-
tically very important scenario of the null hypothesis being 
a point null (i.e.  ​θ  = ​ (ξ, η)​​, where ​dim ξ  =  1​ with ​​H​ 0​​ : ξ  = ​ ξ​ 0​​​  
and  ​​H​ 1​​ : ξ  ≠  ​ξ​ 0​​​,  thus ​η​ represents the nuisance parameters). 
If we assume that the prior for ​ξ​ is continuous at ​​ξ​ 0​​​ (condi-
tional on the nuisance parameters) then the numerator can 
be written as ​∫ P​( | ξ  = ​ ξ​ 0​​, ​H​ 1​​, η)​ π​(η | ξ  = ​ ξ​ 0​​, ​H​ 1​​)​dη​ instead of 
​∫ P​( | ​H​ 0​​, η)​π​(η | ​H​ 0​​)​dη​. However, ​∫ P​( | ξ  = ​ ξ​ 0​​, ​H​ 1​​, η)​π​(η | ξ  = ​
ξ​ 0​​, ​H​ 1​​)​dη  =  P​( | ξ  = ​ ξ​ 0​​, ​H​ 1​​)​​, and by Bayes’ theorem we have 

 ​P​( | ξ  = ​ ξ​ 0​​, ​H​ 1​​)​  = ​ 
P​(ξ  = ​ ξ​ 0​​ | ​H​ 1​​, )​P​( | ​H​ 1​​)​  _________________  P​(ξ  = ​ ξ​ 0​​ | ​H​ 1​​)​

  ​​. As the denominator is 

​P​( | ​H​ 1​​)​​ (see Eq. (5)), the Bayes Factor is simply

​B ​F​ 01​​  = ​ 
P​(ξ  = ​ ξ​ 0​​ | ​H​ 1​​, )​

  ___________ P​(ξ  = ​ ξ​ 0​​ | ​H​ 1​​)​
 ​​

in this case. This is called the Savage–Dickey density ratio [25]. 
A characteristic of Bayes Factors is the need for prior infor-

mation on the investigated parameter’s distribution. This is 
generally true for Bayesian methods; whether it is a draw-
back or not, and how the prior should be selected is a matter 
of vast, decade-long debate [26, 27]. Alternatively, some have 
proposed the usage of the so-called ”Minimum Bayes Factor”, 
i.e.  the smallest Bayes Factor that is possible (over all pri-
ors) [28, 29, 30], which is therefore no longer dependent on the 
prior (but may be dependent on certain assumptions). And, of 
course, one has to be willing to accept the fact that this metric 
is no longer a ”context independent” measure, but rather the 
prior belief is needed to be incorporated later on (which is just 
an advantage, i.e. that Bayes Factors make this fact explicit). 

As Bayes Factor has many further advantages, and cor-
rects many misuses that are often apparent with ​p​-values, its 
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wider application been endorsed by Goodman  [31, 32] and 
Wagenmakers [33], among others. 

Despite this, Bayes Factors are seldom used in practice 
in medicine, especially in ”ordinary” clinical papers – their 
appearance is mostly limited to papers that specifically demon-
strate or investigate their usefulness (e.g. [34]), but they almost 
never appear as regular apparatus in the investigation of usual 
clinical questions. 

The aim of this paper is investigate the real-life applicabil-
ity of Bayes Factors by comparing the results obtained with 
them to that of null hypothesis significance testing in a sim-
ple, but realistic medical scenario on individual patient data. 
The paperwill be purely descriptive, i.e. no in-depth attempt 
is made to give theoretical (mathematical) explanation to the 
observed phenomena.

2 Material and Methods
2.1 Investigated questions

The aim will be to investigate the applicability of Bayes 
Factors in regression analysis with – standard, normal – linear 
models by comparing them to traditional means (i.e. ​p​-values). 
It was selected as an example because regression analysis is one 
of the most fundamental tools in biostatistics, thus this will be 
a relevant example. However, as a preliminary investigation, it 
will be confined to the most simple question within regression 
analysis: assessing a single explanatory variable’s impact (in 
itself) on the response variable. (Although this should be done 
with caution when multicollinearity is present, but is neverthe-
less a very basic analytical question.) 

Within the null hypothesis significance testing framework, 
this question can be addressed by the ​t​-test, as discussed in any 
standard textbook [35, 36]. The Bayes Factors approach in its 
most popular form for this case  [37, 38] will be now briefly 
outlined. 

Consider the following regression model: 

​​y​ i​​  =  α + ​β​ 1​​ ​x​ i,1​​ + ​β​ 2​​ ​x​ i,2​​ + … + ​β​ p​​ ​x​ i,p​​ + ​ε​ i​​,​

where ​​ε​ i​​​ is assumed to be independent normal variate with zero 
mean and constant ​σ​ variance. Our research question can be 
formulated as ​​H​ 0​​ : ​β​ j​​  =  0​ versus ​​H​ 1​​ : ​β​ j​​  ≠  0​, therefore by 6 we 
have 

​B ​F​ 01​​  = ​ 
​∏ i=1​ 

n  ​ ​​ ϕ​(​ ​y​ i​​ − ​(α + ​β​ 1​​ ​x​ i,1​​ … + ​β​ j−1​​ ​x​ j−1,i​​ + ​β​ j−1​​ ​x​ j+1,i​​ + … + ​β​ p​​ ​x​ i,p​​)​    _______________________________  σ ​ )​
    _________________________________________     

​∫ b​​ ​​ ​∏ i=1​ 
n  ​ ​​ ϕ​(​ ​y​ i​​ − ​(α + ​β​ 1​​ ​x​ i,1​​ … + ​β​ j−1​​ ​x​ j−1,i​​ + b ​x​ j,i​​ + ​β​ j−1​​ ​x​ j+1,i​​ + … + ​β​ p​​ ​x​ i,p​​)​    ___________________________________  σ ​ )​π​(b)​b

 ​,​

where ​ϕ​ is the standard normal density. Assuming we know 
every regression coefficient apart from ​​β​ j​​​ and the error vari-
ance ​σ​ (these assumptions can be relaxed, or we can consider 
the analysis to be conditional on them) all we need is ​pi​(b)​​
, the prior distribution of a regression coefficient. The most 
popular choice is Cauchy-distribution, which is equivalent to 

a hierarchical normal/inverse gamma model (but this latter can 
be more easily generalized to this multivariate case): 

​β | g  ∼  N​(0, g ​σ​​ 2​ ​​(​X​​ T​ X / n)​​​ −1​)​​

​g  ∼  InvGamma​(1 / 2, ​s​​ 2​ / 2)​,​

where ​β  = ​​ [​β​ i​​]​​ i=1
​ p ​​ , ​X  = ​​ [​x​ i,j​​]​​ i=1,j=1

​ n,p ​​   and ​s​ is a new (hyper) 

parameter. This choice is usually called weekly informative, 
fulfilling location and scale invariance, consistency and 
consistency in information (objective or default prior). This is 
usually attributed to Jeffreys, with an expansion from Zellner 
and Siow (JZS prior) [23, 39]. 

Now that the methods are clarifed, the questions of interest 
will be more specifically: 
•	 How Bayes Factors compare to ​p​-values? 
•	 How is this relationship affected by certain parameters, 

particularly the applied prior (​s​) and the sample size?

2.2 Patient data
To present a realistic example, real-life data from the repre-

sentative US survey National Health and Nutrition Examination 
Survey (NHANES) will be used. NHANES is now a continu-
ous public health program, with results published in biannual 
cycles [40]. It is a nation-wide survey aimed to be represen-
tative for the whole civilian non-institutionalized US popula-
tion, by employing a complex, stratified multi-stage probabil-
ity sampling plan. The amount of collected data is tremendous 
(although sometimes varying from cycle to cycle), including 
demographic data, physical examination, collection of clinical 
chemistry parameters, and a thorough questionnaire concentrat-
ing on anamnesis and lifestyle. Now ​p  =  43​ clinical chemistry 
parameters1 from the 2013/14 cycle – the most recent available 
– will be used [41]. To make the database more homogeneous, 
it was filtered to males aged 18 years or more. For simplic-
ity, subjects with any missing value were left out. Although 
for precise analyses it is important to take the survey structure 
into account by weight, now – as the focus of the study was 
elsewhere – this was neglected for simplicity. 

On this database, regressions can be carried out by regress-
ing one of these variables against the rest. These are clinically 
meaningful and based on real-life data. As we have a number 
of variables, this database also makes it possible to investigate 
regressions of very different nature (as variables have a very 
diverse distribution, and correlational structure). 

The final sample size was ​n  =  1190​; this is large enough so 
that subsamples can be also used when studying smaller sam-
ples (with having results for the full sample).

1 Data files used: HDL (cholesterol – HDL), TRIGLY (cholesterol – LDL and 
Triglycerides), TCHOL (cholesterol – total), CBC (Complete Blood Count with 
5-part Differential – Whole Blood), GHB (Glycohemoglobin), INS (Insulin), GLU 
(Plasma Fasting Glucose) and BIOPRO (Standard Biochemistry Profile).

(9)

(8)

(10)

(11)
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2.3 Programs used
All analysis was carried out under the R statistical program 

package, version 3.3.1  [42] with a custom script developed 
for this purpose that is available at the corresponding author 
on request. The Bayes Factors were calculated with package 
BayesFactor, version 0.9.12-2  [43]. Data visualization is 
performed with the lattice package, version 0.20-33 [44].

3 Results
A comparison of the ​p​-values and Bayes Factors of the pre-

dictor variables in a regression is shown on Fig. 1 for the exam-
ple of glycohemoglobin. 

The relationship is almost perfectly linear between the loga-
rithm of the ​p​-value and the Bayes Factor. This is no exception: 
Fig. 2 shows the same scatterplots for all variables (all variable 
selected as response, one at a time, and the remaning being 
predictors) in logaritmic scale. Indeed, even the smallest linear 
correlation coefficient between the logarithms is over ​0.99​. 

Next, the role of the sample size will be investigated. The 
same analysis as on Fig. 1 was repeated, but with smaller sam-
ples. These were randomly sampled from the whole database 
(with replacement); sample sizes 50, 100, 200 and 500 were 
used. Actually, the aim of this investigation is twofold: this 
method makes it possible not only to investigate the effect of 
sample size, but also the sampling variation as now many sam-
ples could be investigated. (1000 random samples were now 
drawn.) Results are shown for the example of serum glucose 
(as explanatory variable): Fig. 3 shows the univariate distribu-
tions, Fig. 4 shows the joints distribution. 

One can see that both ​p​-values and Bayes Factors get smaller 
as sample size increases (logically), and also their variability 
decreases (note the logarithmic scale). 

The joint distribution reveals that the relationship between ​p​
-values and Bayes Factors gets stronger with increasing sample 
size. (Thus it is no surprise that we have seen an almost perfect rela-
tionship for the whole sample.) Again, note the shifting to lower ​
p​-value/Bayes Factor with increasing sample size, as expected. 
The other observation that is very clear from the scattergram is 
the strong relationship in this sense too, and – more importantly – 
it is now apparent that this gets stronger withsample size.

Finally, the effect of the used prior was investigated. As 
it was already discussed, ”used prior” now means the selec-
tion of the ​s​ hyperparameter; in addition to the default ​​√ 

__
 2 ​ / 4​ 

(”medium”, this was used everywhere up to here), the alter-
natives ​1 / 2​ (”wide”) and ​​√ 

__
 2 ​ / 2​ (”ultrawide”) were now inves-

tigated. Results are shown on Fig. 5 (again for the example of 
glycohemoglobin). One can see that the pattern is similar, with 
the points shifted upwards as the value of ​s​ increases; this is 
again logical.

4 Discussion and conclusion
​p​-values and Bayes Factors are strongly related. Their rela-

tionship comes as no surprise as they measure related charac-
teristics; the strength of the connection is what can be surpris-
ing at first glance. 

However, it should be noted that in simple cases it might 
even happen that there is a deterministic relationship between 
the two [45]. Even when not, such strong relationship has been 
already described in the literature [46, 47]. The reason can be 
best seen for point null hypotheses (as in the present case) by 
considering the Savage–Dickey ratio presented in Eq. (7): the 
BF is the ratio of two densities under the same model, while ​p​
-value is related to the posterior density, and they are changing 
roughly proportionally when ​S​ is changing [48]. 
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Fig. 1 ​p​-values and Bayes Factors of the explanatory variables in the regression of glycohemoglobin.
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Fig. 3 Effect of sample size – shown in the panel titles – and sampling variation on ​p​-values and Bayes Factors (univariately), with the glycohemoglobin being the 
response variable and serum glucose being the investigated predictor variable; vertical black lines indicates the estimates for the full sample (logarithmic scale).
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The present research also makes it clear that – in the inves-
tigated scenario – the relationship gets stronger with increasing 
sample size: for samples larger than a few hundred observation, 
the relationship is almost perfect. 

When using JZS prior, the choice of the ​s​ parameter had no 
major impact on the relationship between ​p​-values and Bayes 
Factors, but uniformly shifted Bayes factors. 

Finally, it is important to emphasize that these findings do 
not make Bayes Factors pointless: even for a perfect relation-
ship, the message conveyed by Bayes Factors is different (and, 
as we have seen, much more instructive and scientifically cor-
rect thanthe current typical practice with ​p​-values).
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