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Abstract—In favour of the reconstruction of the real or virtual
image’s phase and intensity, the complete digital holographic
images are being processed. This reconstruction takes place
with the numerical definition of the diffraction integral. One
of the possible realization is the Fresnel approximation, which
employs a single Fourier-transformation. Another method is the
interpretation of the diffraction formula as a convolution integral,
and the calculation of this formula will be doubled or tripled
by the Fourier transformation. In this convolution approach the
impulse response of wave fields should be defined, from which the
Fourier transform can be immediately determined. The impulse
response as well as the Fourier transform can be immediately
defined, or well approximated. The essential difference between
the Fresnel and convolution approach is the different size of
resultant images. Furthermore, this size in case of the Fresnel
process depends on the distance of the object and the sensor, as
well as the wavelength of the illuminating light; but in the other
case, it is not.

I. INTRODUCTION

Holography is a good way for recording and reconstructing
optical wave fields. Holographic interferometry seems the
most important application of holography in metrology, where,
before and after variation, wave fields are correlated. Defor-
mation fields and refraction index alterations are coded into
distinct interference fringes [1]. The interference patterns to
the precision measurements are recorded with CCD or CMOS
cameras and are evaluated numerically. At first the interfer-
ence phase distribution is defined, from which, secondly, we
can calculate the displacement of vector fields, deformations,
stresses, refractive and related physical quantities. The descrip-
tion of digital holographic reconstruction- based on diffraction
theory- comes afterwards, after a short overview of the given
requirements of holographic method and sampling principle.
The numerical algorithms, and the calculation of the diffrac-
tion integral is being implemented. The typical features and
capabilities of calculations should be identified and compared.
It is important, that not the numerically produced holograms
were refined, but the optically produced holograms had been
digitally recorded and after that these were reconstructed.

II. THE FRESNEL APPROXIMATION

On the following graph, the geometry for the description of
Fresnel holography can be seen:

We assume that a plane surface on (x,y) plane reflects on
b(x,y) wave field. Let the hologram be on (£,7) plane, d
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Fig. 1. Fresnel geometry [2].

distance from the surface of the object [3]. The reconstructed
real image is placed on (z,y) plane which is distance d from
the plane of the hologram.

The interference in the hologram in each point is determined
by angle 6 between the reference wave and the object wave:
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where,  the received ray distance and A denotes the used
wave length. To the A¢ pixel distance sensor matrix the

sampling theorem requires at least 2 pixels per ray period as
2A¢ < 6 or

)
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since, for the small 0, sinf ~ tanf = 6. Small angles
required by the sampling theorem can be used at survey of
small objects; remote objects from the sensor matrix or at
magnification of the wave field with negative lens [7].

Parallel or divergent reference waves can be used in digital
holography with normal or leaning incidence onto the sensor
matrix. Largely, which is the most suitable for numerical
evaluation, is the plane wave, generally with spatially constant
amplitude and phase. It can be modelled with r(£,7) = 1+0i
on the basis of real vectors.

Nevertheless, the optical reconstruction was executed by the
illumination of the developed hologram with the reference
wave. Therefore, we multiply the digital hologram with the
reference wave field in the holograms plane and we calculate
the diffraction pattern in the image plane. This complex field
represents the real image, if d = d, or the virtual image, if we
taked = —d.



The Rayleigh-Sommerfeld equation disposes the diffracted
field in the image plane [8].
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Here h(£,n) is the recorded hologram, r(£,7) is the ref-
erence wave field, k = 2/) is the number of the wave, and
cosf means the leaning factor which can normally be disposed
with cosf = 1, thanks to the small angles between the normal
hologram and the rays from the hologram to the real image
points.

Whereas in case of (3), d’ can replace p in the denominator,
until d’ is bigger than (¢ — ') and (n — y'), p, p in the nu-
merator determines the spatially quickly changing phase. The
same replacement in the numerator would cause unacceptable
mistakes. Binomial expansion (v/1 —a = 14+ 3a—ga?+—...)
is applied in the Fresnel approximation for the square root (4)
which applies to small a. Preserving the first two conditions,
we get:
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Afterwards the diffraction integral is the following:
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The diffracted field is the holograms Fourier transform, as it
is shown in (6)’s last line, multiplying with the reference wave
and the chirp function { #%-(¢2 + 7]2)} We multiply result of
this Fourier transformation with phase factor and the spatially
constant intensity factor 1/(iA\d’).

For numerical evaluation, we take the discrete finite form
of (6), omitting the spatially constant factors.

We take the discrete finite form of (6), for numerical
evaluation and we omit the spatially constant factors.
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Or in short:
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In these equations h(kAE,IAn) denotes the quantised and
digitalised hologram, r(kAE,lAn) is the reference wave,

w(kAE IAn) = e;vp{ I (K2AE + 12An?)

dimension finite chirp function, as well as z(nAz’, mAy') =
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The reconstructed image’s pixel size:
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where, IV is the pixel number of the sensor matrix in each
direction.

In most application the phase factor z(nAx',mAy’) is
negligible, unless the intensities of the reconstruction are
interested, or phase differences count, as in holographic in-
terferometry [4] [6]. 2z is independent from the evaluated
hologram which means that it gives the same phase shift
in each point in different object positions reconstruction and
drops out the holographic interferometry’s process of phase
deduction.

On the Fig. 2., a holographic record can be seen, made from
the USAF 1951 resolution testing slide preparation, where the
object is placed 4.5 mm from the sensor matrix, the pixelsize
is A¢ = 6.8um and the wavelength is A = 0.470um. The
reference wave is: r(kA&,IAn) = 1 + 0i. The numerically
reconstructed wave field; the reconstructed image can be seen
on the Fig. 3. The d.c. condition of the high intensity Fresnel
transformation covers the reconstructed field’s central area,
which can be eliminated with the methods described in [9].

III. THE DIFFRACTION INTEGRAL, AS CONVOLUTION
(CONVOLUTION APPROACH)

The Rayleigh-Sommerfeld diffraction equation (3) is a su-
perposition integral for a b'(z’,y") wave fields reconstruction.
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where, a g(2/,y’, &, n) impulse response is finitely given as
follows:



Here cos® = d’'/p has been applied. The second line of
(11) shows that g(a’,y',&,n) = g(a’ — £),y’ — n) describes
the linear system which is spatially constant, in conclusion, the
superposition integral is a convolution. It allows the econom-
ical calculation of the diffraction integral without estimation
[5]. The convolution theorem claims that the convolution with
the Fourier transformation of h - r, g is the result of F'{h-r}
and F{g} individual transformations. Therefore b’ (2’,y’) can
be calculated with the first Fourier transformation of h - r,
which is then multiplied with the Fourier transformation of g,
and then we take the result’s inverse Fourier transform. All the
three Fourier transformations are needed for the whole process,
to which the FTT (Fast Fourier Transformation) algorithm is
effectively applicable [5].

The numerical realisation of the impulse response:
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Because of symmetrical reasons, the N/2 shift of co-
ordinates takes place. Furthermore, the intensity condition
cos® = d'/p is negligible, as cos©, based on O, defined
by (2) is less than 1/1000, results the difference from 1. (12)
represents the impulse response function’s free expansion. The
Fourier transform of g(k,!) impulse response is the G(n,m)
transfer function. Thus, the free space propagation’s transfer
function can also be defined directly as follows:

Fig. 2. USAF 1951 holographic image.
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with this we have saved a Fourier transformation.

The survey of the first line of (6) shows that similarly the
Fresnel transformation is a convolution, with the following
impulse response:
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The Fresnel approximation of the transfer function:

Fig. 3. USAF 1951 reconstructed image. Gr (n m) _
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(11) following:



Az’ = A€ Ay = An (16)

The emerged image covers image field N A& x N A instead
of a in comparison with the Fresnel transformation. The bigger
image size in the latter case until (d' > A&2/)), shows that
there is even more information coded in the hologram, than
it was reconstructed by the single convolution integral. It is
impossible to extract this additional information, with setting
different values for (¢,7) and (2’,%’) plane. It would violate
the field invariant, which is a necessary condition for the valid-
ity of the convolution theorem. Thus, the impulse responses
application shifts the reconstructed field with (spA¢, s;An)
vector [6].
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the original hologram, the surrounding pixels have 0 intensity.
The size of the reconstructed image is 2N A x 2N An. There
is an example on Fig. 5., where on the left side, the magnified
hologram can be seen, as well as on the right side, the
corresponding reconstructed image.

Fig. 5. Magnified hologram and the reconstructed image.

a7 IV. COMPARISON OF THE RECONSTRUCTION METHODS

The extent of possible shifts is given by the sampling
theorem, in compliance with (2).

On Fig. 4. we can see the reconstruction of 4 different shifts.
The comparison on Fig. 3. clearly makes the different image
sizes in contrast with the Fresnel-results visible.

Fig. 4. Reconstructed images with the process of convolution and different
shifts.

The image can be scaled as well, until the same scaling takes
place on (§,7) and (2',y’) planes. Black pixels can be added
in order to increase the margin of N x [N hologram and have
a 2N x 2N hologram. The central N x N pixels derives from

Different realisations of the diffraction integral are shown
in the following table:

TABLE 1

Method

Fresnel approximation
(Chirp function)
Fresnel approximation
(Impulse response)
Fresnel approximation
(Transfer function)
Diffraction integral
(Impulse response)
Diffraction integral
(Transfer function)

Algorithm
z-F Yh-r w}

F-HF{h-r} Flort}

FYF{h-r} -Gr}

FUF (b} Flgh)

F-YF{h-r}, G}

There is fundamental difference between the Fresnel trans-
form (the evaluation of the given chirp function in the first line
of the table) and the given method presented in the following
4 lines. If we take plane (£,7), as the spatial field of the
digital hologram, then the first mentioned procedure gives
result for spatial frequency domain, because of the single
Fourier transform. The other four algorithms consist of the
multiplication of spectrum h - r and the transfer function in
the spatial frequency domain and from a next transformation.

The consequence of this difference is the diversity of pixel
size in reconstructed images, in compliance with (9) and (16)
correlation. Despite the different sizes, it is still important
that size Az’ x Ay’ in the Fresnel case uses the chirp
function, depending on A\ wavelength and d’ reconstruction
depth while in the other four cases, the size is independent
from these parameters. These latter algorithms are especially
well-applicable at inline hologram recordings, where depth
information is made from the examined objects. The sizes
of all reconstructions allow and provide direct comparison.
For size adaptation, there is no need for magnification with



final interpolation. These kinds of experiments are described
in detail at these processes [10].

Theoretically all mentioned methods are attainable in holo-
graphic interferometry for giving phase shifts. The two states
of the examined object which is to be compared are indi-
vidually recorded and evaluated. The interference phase can
be calculated after the evaluation of b(n,m) and b4(n,m)
complex fields phase distribution [1]. There is no significant
difference between the four methods interference phase dis-
tribution, which are based on the convolution approach. If
we apply the Fresnel transformation, only the reconstructed
image’s size will make a contrast from those reconstructed by
the convolution approach.

If we examine small objects, theoretically we can work in
that field, where the process based on Fresnel approach evoke
real/minimal mistakes. Afterwards the convolution approach is
suggested, as it gives an exact solution for diffraction integral,
until it does not violate the sampling theorem. In the last four
algorithms of the table, where we take its inverse transform in
the spatial frequency field, it brings similar results, however,
there are differences in the numerical process. There are
such differences in the calculation of impulse response or the
transfer function fields, where the complex exponential dif-
ference differs more than 7 between the neighbouring pixels.
In these points the calculated impulse response’s or transfer
function’s absolute value must be set for zero. This method
takes place with Fourier transform as well, that outlines the
impulse response in the transfer function as well as vice versa.
Therefore, the result is independent from the selection of each
(above mentioned four) reconstruction algorithm.

V. CONCLUSION

The digital recording and numerical reconstruction of holo-
grams provides new opportunities in optical metrology. The
numerical evaluation of digital Fresnel holograms can be
implemented with Fresnel transformation or convolution, in
accordance with the diffraction integral. The essential differ-
ence between the results of the two approaches resides in
the reconstructed image’s pixels. If we compare reconstruc-
tions with two different depth, the convolution approach is
suggested, because here, the image’s size does not depend
on the depth of the reconstruction. Insofar the examined
object is transparent or opaque, the Fresnel transformation is
recommended for the reconstruction.
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